Multiscaling fractional advection-dispersion equations and their solutions
نویسندگان
چکیده
[1] The multiscaling fractional advection-dispersion equation (ADE) is a multidimensional model of solute transport that encompasses linear advection, Fickian dispersion, and super-Fickian dispersion. The super-Fickian term in these equations has a fractional derivative of matrix order that describes unique plume scaling rates in different directions. The directions need not be orthogonal, so the model can be applied to irregular, noncontinuum fracture networks. The statistical model underlying multiscaling fractional dispersion is a continuous time random walk (CTRW) in which particles have arbitrary jump length distributions and finite mean waiting time distributions. The meaning of the parameters in a compound Poisson process, a subset of CTRWs, is used to develop a physical interpretation of the equation variables. The Green’s function solutions are the densities of operator stable probability distributions, the limit distributions of normalized sums of independent, and identically distributed random vectors. These densities can be skewed, heavy-tailed, and scale nonlinearly, resembling solute plumes in granular aquifers. They can also have fingers in any direction, resembling transport along discrete pathways such as fractures.
منابع مشابه
A numerical scheme for space-time fractional advection-dispersion equation
In this paper, we develop a numerical resolution of the space-time fractional advection-dispersion equation. We utilize spectral-collocation method combining with a product integration technique in order to discretize the terms involving spatial fractional order derivatives that leads to a simple evaluation of the related terms. By using Bernstein polynomial basis, the problem is transformed in...
متن کاملThe new implicit finite difference method for the solution of time fractional advection-dispersion equation
In this paper, a numerical solution of time fractional advection-dispersion equations are presented.The new implicit nite dierence methods for solving these equations are studied. We examinepractical numerical methods to solve a class of initial-boundary value fractional partial dierentialequations with variable coecients on a nite domain. Stability, consistency, and (therefore) convergenceof t...
متن کاملAnomalous Advection-Dispersion Equations within General Fractional-Order Derivatives: Models and Series Solutions
In this paper, an anomalous advection-dispersion model involving a new general Liouville–Caputo fractional-order derivative is addressed for the first time. The series solutions of the general fractional advection-dispersion equations are obtained with the aid of the Laplace transform. The results are given to demonstrate the efficiency of the proposed formulations to describe the anomalous adv...
متن کاملEulerian derivation of the fractional advection-dispersion equation.
A fractional advection-dispersion equation (ADE) is a generalization of the classical ADE in which the second-order derivative is replaced with a fractional-order derivative. In contrast to the classical ADE, the fractional ADE has solutions that resemble the highly skewed and heavy-tailed breakthrough curves observed in field and laboratory studies. These solutions, known as alpha-stable distr...
متن کاملAdvection and dispersion in time and space
Previous work showed how moving particles that rest along their trajectory lead to timenonlocal advection–dispersion equations. If the waiting times have infinite mean, the model equation contains a fractional time derivative of order between 0 and 1. In this article, we develop a new advection–dispersion equation with an additional fractional time derivative of order between 1 and 2. Solutions...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003